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Sparse sampling offers tremendous potential for overcoming the time limitations imposed by traditional
Cartesian sampling of indirectly detected dimensions of multidimensional NMR data. However, in many
instances sensitivity rather than time remains of foremost importance when collecting data on protein
samples. Here we explore how to optimize the collection of radial sampled multidimensional NMR data
to achieve maximal signal-to-noise. A method is presented that exploits a rigorous definition of the min-
imal set of radial sampling angles required to resolve all peaks of interest in combination with a funda-
mental statistical property of radial sampled data. The approach appears general and can achieve a
substantial sensitivity advantage over Cartesian sampling for the same total data acquisition time.
Termed Sensitivity Enhanced n-Dimensional or SEnD NMR, the method involves three basic steps. First,
data collection is optimized using routines to determine a minimal set of radial sampling angles required
to resolve frequencies in the radially sampled chemical shift evolution dimensions. Second, appropriate
combinations of experimental parameters (transients and increments) are defined by simple statistical
considerations in order to optimize signal-to-noise in single angle frequency domain spectra. Finally,
the data is processed with a direct multidimensional Fourier transform and a statistical artifact and noise
removal step is employed.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Introduction of the direct multidimensional Fourier transform
[1–3] has allowed for the presentation of various sparse sampling
schemes [4–8]. The primary focus of this and related developments
has been from the perspective of increasing the speed and resolu-
tion of an experiment, with the assumption that sensitivity is not
limiting. Because the Fourier transform of non-uniformly sampled
data always gives rise to artifacts as a result of the sampling
scheme employed, the main goal of developing new sampling
schemes is to avoid or reduce artifacts. This is accomplished, for
example, by specifically weighting the sampled points [8], by con-
structing the sampling to shift the artifacts away from a peak or to
distribute the artifacts equally though the spectrum so they appear
as baseline noise [5,6]. This is made possible by the fact that the
artifacts are a function of the sampling scheme. This approach
has proven successful in multiple cases [5,9]. Additionally, multiple
post acquisition methods have been described to remove artifacts
from the spectrum by iteratively analyzing and subtracting the
artifact intensity [5,9].
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Here the alternative situation is considered, where the goal is to
increase the sensitivity of a given spectrum. Briefly, to accomplish
this we will use a combination of radial sampling [10] and a previ-
ously unexploited statistical property of the data. Recently, we
have shown that the defined pattern of artifacts arising from the
multidimensional FT of radial sampled data allows the definition
of a set of algorithms to optimize angle selection [11,12]. As we
demonstrate here, optimized angle set collection for radial
sampling provides significant freedom for the further optimization
of multidimensional NMR spectra with respect to signal-to-noise
(S/N). We will first present the theory and the resulting criteria that
suggest how data optimized for S/N should be collected. We then
illustrate how an inherent feature of radial sampling provides the
subsequent opportunity to utilize non-linear statistical methods
to exponentially reduce the noise without introduction of artifact.
Providing that the criteria underlying the basic approach are met, a
substantial sensitivity advantage can be achieved. In addition, the
SEnD approach allows one to assess the appropriateness of a utiliz-
ing radial sampling successfully for a given experiment.

2. Theory

The SEnD criteria are developed here. To develop the method
we decompose the signal and noise terms into the terms depen-
dent on transients, increments and the lower value comparison.
This enables a direct comparison of a Cartesian sampled data set
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to the equivalent experiment collected with radial sampling and
processed with the lower value comparison.

Radial sampling is achieved by linking two or more of the indi-
rect dimensions and linearly sampling a vector at an angle (a) with
respect to the two orthogonal time domains [10]. In the case of a
three-dimensional experiment, this is achieved by collecting the
directly detected time domain signal normally and linking the indi-
rect dimensions by defining t1 ¼ s cosðaÞ and t2 ¼ s sinðaÞ and lin-
early sampling the time period s. The directly acquired dimension
is sampled and processed traditionally and therefore will be ex-
cluded from this analysis. As a result, Cartesian sampled data is
represented as a two-dimensional signal with four quadrature
components per increment and radial sampled data is represented
as a one-dimensional signal also with four quadrature components
per increment.

First, we will analyze the noise terms with respect to the sensi-
tivity parameters. For a typical NMR experiment the noise can of-
ten be described with a normal distribution of probability centered
upon zero:

pðxÞ ¼ 1
r
ffiffiffiffiffiffiffi
2p
p e�

x2

2r2 ð1Þ

where r is the standard deviation and x is the amplitude of the
noise. The standard deviation of the noise changes as a function
of both increments and transients. First, we will analyze how
changing the number of increments affects the standard deviation
of the noise.

The noise is directly dependent upon the number of increments
collected. By definition the Fourier transform is a summation. Thus
the noise in each data point is present in summation in the final
spectrum. The standard deviation of the noise increases as a func-
tion of the square root of the number of increments used. The final
standard deviation of the noise, in the case of n transients, may be
expressed using the variance sum law [13] and is written as
follows:

rni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðr2

1 þ r2
2 þ � � � þ r2

nÞ
q

ð2Þ

where rn is the standard deviation of the noise for the nth incre-
ment, rni is the standard deviation of the noise after collecting n
increments and q is the number of quadrature components. The
number of quadrature components is constant for all cases that
we use to develop the SEnD criteria and therefore will be dropped
from subsequent expressions.

If acquisition parameters are kept constant while the number of
increments is varied such that the standard deviation of the noise
of each increment is constant, the final standard deviation of the
noise is a function of the square root of the number of increments:

rni ¼ rs

ffiffiffi
n
p

ð3Þ

Here the individual noise standard deviations for the n components
has been replaced with a common value rs.

If apodization is applied to the data then the standard deviation
of the noise is scaled for each increment and the equation relating
the number of points to the final standard deviation must be
rewritten to include the apodization term, i.e.

rni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðAð1Þr1Þ2 þ ðAð2Þr2Þ2 þ � � � þ ðAðnÞrnÞ2�

q
ð4Þ

Here AðnÞ is the value of the apodization function for a given incre-
ment n. Again, if the standard deviation of the noise is equivalent for
all points this equation can be rewritten as:

rni ¼ rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXni

n¼1

AðnÞ2
vuut ð5Þ
If all parameters other than the number of increments are constant
then the relative change in the standard deviation of the noise is
represented as a ratio of the two apodization functions:

Drni ¼
Pnim

m¼1AðmÞ2Pnin
n¼1AðnÞ2

" #1
2

ð6Þ

Here nim is the revised number of increments while nin is the origi-
nal number of increments. In the case of a 2D indirect plane of a 3D
data set this treatment is directly extended using a double summa-
tion over the entire matrix of increments from both dimensions. For
a 2D experiment the standard deviation of the noise may be written
as:

rni�ni2 ¼ rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXni2

m¼1

Xni

n¼1

ðA2ðmÞA1ðnÞÞ2
vuut ð7Þ

This expression can then be used to generate an equation for a ra-
dial sampled experiment. Radial sampling increments a single time
delay and accordingly a single summation is included. However, as
both apodization functions are still required, we have:

rnirad ¼ rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnirad

n¼1

ðA2ðnÞA1ðnÞÞ2
vuut ð8Þ

Here both apodization functions are written here for clarity though
in many cases a single equation suffices because of the common
increment.

To evaluate the change in noise when converting from Cartesian
sampling to radial sampling the ratio of Eqs. (7) and (8) is used.

Drni ¼
rnirad

rni�ni2

ð9Þ

As a result of employing radial sampling the standard deviation of
the noise is reduced. For example, if 64 points were collected in
both indirect dimensions of a Cartesian sampled experiment com-
pared to an equivalent resolution radial sampled experiment with
64 points in an angle plane the expected noise per angle will be re-
duced approximately 6.5-fold, although, as we will show below, the
signal intensity is reduced simultaneously. Here a cosine-squared
apodization function was used for both dimensions and a 45-degree
radial sampling angle employed in the case of radial sampling.

The other relevant acquisition parameter that affects the stan-
dard deviation of the noise is the number of transient scans
summed. Similar to the dependence of the noise on the number
increments sampled, the change in the standard deviation of the
noise as a function of the number of transients summed also obeys
the variance sum law. The change in the standard deviation of the
noise is commonly thought of as increasing by the square root of
two as the number of transients is doubled. Using this fact, a con-
tinuous function for changing the number of transients is written
as:

Drnt ¼ rs

ffiffiffi
2
p log2ð

nj
ni
Þ

ð10Þ

where rs is the standard deviation of the noise for a single transient
scan, ni is the original number of transient scans and nj is the up-
dated number of scans.

A final point regarding the noise that must be considered is the
effect of the lower value comparison [10] when multiple angles are
collected independently, processed and compared on an element
basis. The lower value comparison is a popular treatment to re-
move artifact ridges when generating a final spectrum. Here we
provide the relevant theory of how the standard deviation of the
noise changes as a function of the number of angle spectra com-
pared. For this analysis only regions of a spectrum that contain
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noise are initially considered. The effects of peaks and ridges are
considered subsequently.

In general, the lower value algorithm compares equivalent
points from independent spectra and retains the lowest magnitude
value to generate a final spectrum [10]. Previously, it has been as-
sumed that the average deviation of the noise in the final spectrum
decreases linearly as a function of the number of angles compared
[14]. However, this description is insufficient to provide a means to
analyze the change in the standard deviation of the noise as a re-
sult of lower value comparisons. To understand how the standard
deviation of the noise decreases as a function of the number of an-
gle spectra compared we start with a normal distribution of noise,
Eq. (1). The lower value algorithm compares the magnitude of val-
ues. To analyze the distribution we use an absolute value of the
normal distribution. The resulting probability density after reflect-
ing all of the negative values upon zero results in twice the proba-
bility for a given value of x. The new distribution, substituting
y ¼ jxj is written as:

pðyÞ ¼ 1
r

ffiffiffiffi
2
p

r
e�

y2

2r2 ð11Þ

Integrating the probability density function results in the cumula-
tive distribution:

Pðy 6 YÞ ¼ erf
y

r
ffiffiffi
2
p

� �
ð12Þ

Here the expression is simplified using the error function.
To determine how the standard deviation changes we need to

determine how the probability for a single value of y 6 Y varies
after n trials. Noting that the probability for a single value that sat-
isfies y 6 Y is the complement probability that the same value sat-
isfies y P Y we have:

Paðy P YÞ ¼ 1� Paðy 6 YÞ ð13Þ

Pa is the cumulative probability for a single angle spectrum noise.
Then the probability after n trials is the joint probability of each
trial. Assuming that the noise is constant across the various sam-
pling angles, the probability that all values y are greater than or
equal to Y across the n radial sampling angles is:

PLV ðy P YÞ ¼ ½1� Paðy 6 YÞ�n ð14Þ

If the noise is not constant across all of the angle planes, such as in
the case that a variable number of increments were collected per
sampling angle, then Eq. (14) would be modified as the product of
the individual cumulative probabilities. Continuing with assump-
tion that the noise is constant across all sampling angles, the com-
plement of Eq. (14), i.e. the probability that a value approaches zero,
is then:

PLV ðy 6 YÞ ¼ 1� 1� erf
y

r
ffiffiffi
2
p

� �� �n

ð15Þ

where the cumulative probability has been substituted into the
expression. The probability density is then the derivative of this
expression, Eq. (16).

pLV ðyÞ ¼ e�
y2

2r2 n

ffiffiffiffi
2
p

r
1� erf

y

r
ffiffiffi
2
p

� �� �n�1

ð16Þ

Both the cumulative probability and the probability density are
still in terms of the absolute value of x. To convert the cumulative
probability into terms of x the function is partitioned equally be-
tween positive and negative components. When x P 0 the cumula-
tive probability is divided by 2 and offset by one half to provide for
equal distribution between positive and negative values. To deter-
mine the negative intensity probability the values for x P 0 are re-
flected upon zero and scaled appropriately. Thus the cumulative
probability in terms of x is written as:

PLV ðx 6 XÞ ¼ PLV ðy 6 YÞ
2

þ :5; x P 0 ð17aÞ

PLV ðx 6 XÞ ¼ 1� PLV ðjxjÞ; x < 0 ð17bÞ

The new probability distribution is shown in Fig. 1a as a function of
number of angle spectra compared.

A similar procedure is followed to convert the probability den-
sity function into terms of x. In this case, when x P 0, the probabil-
ity density function is divided by 2 and when x < 0 the probability
density is the reflection of the positive values. The resulting prob-
ability density functions are:

pLV ðxÞ ¼ pLV ðyÞ
2

; x P 0 ð18aÞ

pLV ðxÞ ¼ pLV ðjxjÞ; x < 0 ð18bÞ

The probability density functions for a series of angle spectra are
compared in Fig. 1b.

Finally, the change in standard deviation of the noise is deter-
mined by using the standard formula that relates the standard
deviation to the probability density [13], shown in Eq. (19).

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

�1
x2pLV ðxÞdx

s
ð19Þ

The change in standard deviation is shown in Fig. 1c plotted as a
function of the number of angle spectra compared. This figure dem-
onstrates the substantial reduction in the standard deviation of the
noise. For example, if 10 angles are compared the standard devia-
tion of the noise is reduced 6.6-fold.

Above we have considered the effect of the lower value compar-
ison with the assumption that no peaks or ridges were present in
the noise distribution. The effect of the lower value comparison
on peak intensity will be considered subsequently. In the case
when a ridge is present in the lower value comparison, all of the
values from the noise region of a non-ridge spectrum are retained
as the ridge has an amplitude greater than the magnitude of the
noise intensity. To determine the change in noise at this spectrum
point, the same theory can be used, but excluding the ridge angle
from the total count of number of angles.

The signal terms are now analyzed with respect to the number
transients, increments and lower value comparison. The signal
intensity at a single point of the two indirect dimensions ðxi;xjÞ
of a 3D Cartesian sampled NMR experiment is represented after
apodization and Fourier transformation:

SCartðxi;xjÞ ¼ ntA
Xtmax

2

t2

Xtmax
1

t1

cos2ðxit1Þe�R1t1 cos2ðpt1=2tmax
1 Þ

� cos2ðxjt2Þe�R2t2 cos2ðpt2=2tmax
2 Þ ð20Þ

Here A is a scalar representing the analog–digital conversion, nt is
the number of transients and R is the combined transverse and lon-
gitudinal relaxation rates. For clarity only the cosine–cosine quadra-
ture component is included.

The signal intensity is a sum of a random noise value and the
mean signal described by Eq. (20). The distribution of noise will
have effects when converting from Cartesian to radial sampling be-
cause the maximum signal plus the noise term is what is selected
when calculating the signal-to-noise ratio. If we assume that the
noise intensity is small in comparison to the peak intensity, we
can initially exclude the noise when analyzing the change in signal
upon converting from Cartesian to radial sampling. Therefore, only



Fig. 1. The effect of the lower magnitude comparison on the noise is demonstrated as a function of number of angle spectra compared. The probability distribution function is
shown in (a). The cumulative probability is plotted against the noise intensity for 1 (no comparison), 2, 3, 5 and 10 angle spectra comparisons. The corresponding probability
density plots are shown in (b) for the same numbers of angle comparisons. The change in the standard deviation of the noise is plotted against the number of angle spectra
compared in (c).
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the change in mean signal is used. The noise term will be reintro-
duced when calculating the effects of the lower value comparison,
when the change in signal is directly dependent upon the standard
deviation of the noise.

In the case of radial sampling Eq. (20) is modified to account for
a common increment s, such that the equation for the maximum
signal is written as:

Sradðxi;xjÞ ¼ ntA
Xsmax

s
cos2ðxis cosðaÞÞ cos2ðxjs sinðaÞÞ

� e�ðR1 cosðaÞþR2 sinðaÞÞs cos2ðps=2smaxÞ ð21Þ

Here the apodization functions have been reduced to a single func-
tion because a cosine-squared apodization is used for both dimen-
sions, which leads to a double angle identity that combines the
terms (see above). From Eqs. (20) and (21) it is apparent that
increasing the number of transients linearly increases the signal.
Increasing the number of increments also increases the signal but,
in that case, the signal is scaled by the apodization and relaxation
terms.

The change in maximum signal intensity when converting from
Cartesian sampling to radial sampling is determined by taking the
ratio of Eq. (20) to Eq. (21).

DS ¼ Scart

Srad
ð22Þ

As a result of scaling the signal by apodization and relaxation when
converting from Cartesian sampling to radial sampling the change
in mean signal is not as significant as might be initially perceived.
For example, if two experiments are collected, both requiring the
same amount acquisition time, where the Cartesian sampled exper-
iment uses 60 increments in both indirect dimensions and 4 tran-
sients and the radial sampled experiment used 60 increments, 10
angles and 24 transients, the expected reduction in signal per angle
is approximately 5-fold compared to the 60-fold reduction in acqui-
sition points.

The signal intensity is also modified by the lower value compar-
ison as a result of the noise that influences the maximum signal.
We now describe the change in the mean signal intensity and stan-
dard deviation of the signal intensity distribution to determine the
effects of the lower value comparison. The approach to determine
the change in the mean signal intensity is similar to the treatment
used to determine the change in the noise distribution, but impor-
tantly, the distribution is not centered upon zero and therefore the
mean of the distribution changes as a function of the number of an-
gle spectra compared with the lower value comparison.
In the case of lower value comparison for a peak, the intensity
distribution is offset from zero by the peak amplitude. Therefore,
the lower value is selecting the smallest magnitude value in the
distribution rather than the point closest to the mean of the distri-
bution, as it would in the case of noise symmetric about zero. The
lower value comparison selection moves the distribution towards
zero resulting in a change in both the mean and standard deviation
of the peak intensity distribution. To generally demonstrate the
changes we will use a normal distribution that is centered upon
zero and then select for the minimum value, rather than the min-
imum magnitude value. This allows one to easily determine the
relative changes to both the standard deviation and mean, which
can be extended to any peak intensity distribution.

As before, we start with a normal distribution with a probability
density written as:

pðxÞ ¼ 1ffiffiffiffiffiffiffi
2p
p e�

x2
2 ð23Þ

Unlike the lower value description for the noise the absolute value
is not employed. The density function is integrated to determine the
cumulative distribution, Eq. (24).

Pðx 6 XÞ ¼ 1
2
þ 1

2
erf

xffiffiffi
2
p
� �

ð24Þ

As before, utilizing the fact that the probability of a single value of
x 6 X is the complement of the probability that all of the values
have a value x P X. The cumulative probability of the distribution
after comparing n spectra is:

Pðx 6 XÞ ¼ 1� 1
2
� 1

2
erf

xffiffiffi
2
p
� �� �n

ð25Þ

The resulting change in the cumulative distribution as function of
lower value comparisons is shown in Fig. 2a. Note that the mean
of the distribution changes as the number of comparisons are in-
creased. The new probability density is determined by solving the
derivative of Eq. (25).

pðxÞ ¼ 1ffiffiffiffiffiffiffi
2p
p e�

x2
2 n

1
2
� 1

2
erf

xffiffiffi
2
p
� �� �n�1

ð26Þ

The resulting probability densities are shown in Fig. 2b.
Finally, the change in the mean and standard deviation of the

distribution can be determined using the standard equations,
where the change in the mean of the distribution (l) is determined
as follows:



Fig. 2. The effect of the lower magnitude comparison on the distribution of signal intensity is demonstrated as a function of number of angle spectra compared. The
probability distribution function is shown in (a). The cumulative probability is plotted against the peak intensity for 1 (no comparison), 2, 3, 5 and 10 angle spectra
comparisons. The corresponding probability density plots are shown in (b) for the same numbers of angle comparisons. The change in the standard deviation and mean of the
peak intensity is plotted against the number of angle spectra compared in (c).

Fig. 3. A graphical representation of the probability density analysis to retain a peak
and determine a target signal-to-noise ratio is shown. The distributions for both
peak intensity and noise intensity before and after lower magnitude comparison are
indicated. The lower magnitude probability densities were generated assuming the
comparison of 10 angle spectra.
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l ¼
Z

xpðxÞdx ð27Þ

Accordingly, the change in the standard deviation is determined in
the same manner as for the noise distribution, with the exception
that the values need to be corrected for the non-zero mean, Eq. (28).

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
ðx� lÞ2pðxÞdx

s
ð28Þ

Fig. 2c shows the change in the mean and standard deviation of the
signal intensity distribution as a function of number of angle spec-
tra compared.

The change in the signal is dependent upon the random noise.
In this respect, the average change of the maximum signal inten-
sity is simply the change in the mean of the intensity distribution.
For example, if 10 angle spectra were compared using the lower
value algorithm the expected decrease in the signal intensity is
1.5 times the standard deviation of the single angle plane spectrum
noise.

Importantly, it is also possible to predict the largest possible de-
crease in signal intensity. If the spectrum noise is described by a
normal distribution, then 99.7% of the values are within 3 standard
deviations from the mean. This produces a range of signal intensity
that covers 6 standard deviations. If a single angle spectrum has a
maximum signal intensity of the mean signal plus 3 standard devi-
ations of the noise, while another single angle spectrum has the
same mean peak intensity, but this time, minus 3 standard devia-
tions of noise then the potential change in peak intensity from the
lower value comparison is 6 standard deviations. This concept is
illustrated by the probability density curves shown in Fig. 2b.
The maximum intensity value of the no lower value comparison
spectrum is 3 standard deviations greater than the mean. After
lower value comparison of ten angles the new distribution results
in a minimum intensity value that is 3 standard deviations less
than the original distributions mean.

We have outlined all of the components that influence the sig-
nal-to-noise when converting from Cartesian to radial sampling.
This analysis makes the assumption that the peak intensities are
such that no value will be obscured by the baseline noise. If a peak
intensity is insufficiently intense, such that it is obscured by the
baseline noise, then the probability statements are no longer valid.
A weak peak that changes sign as a result of the noise will behave
according to the lower value noise statistics and approach zero. To
prevent the removal of a peak during the lower value comparison
the acquisition parameters need to be tested by collecting preli-
minary data such as a face (projection) or single angle of the exper-
iment. Additionally, the treatment presented here assumes the S/N
of all angle spectra are comparable and therefore using a single an-
gle to assess the signal-to-noise of the final spectrum is valid. If the
effects of relaxation cause the sensitivity to vary between angles
then the angle with the minimum sensitivity should be used as a
preliminary test for sufficient sensitivity. Additionally if peaks have
an inherent dynamic range then a peak with the weakest intensity
one desires to reliably measure should be used as an indicator of
sensitivity.

The extreme case of signal reduction during the lower value
comparison informs us that the largest reduction in signal is 6
standard deviations of the noise of a single angle. Therefore, if
the signal-to-noise of the single angle test spectrum is at least 6,
the peak will be retained. The expected minimum signal-to-noise
of the final peak is then at least the test angle peak intensity minus
6 standard deviations of noise divided by the standard deviation of
the noise after lower value comparison. To faithfully retain true
peaks during lower value comparisons, single angle spectra with
S/N greater than 6 should be compared.

The change in S/N after lower value comparison is illustrated in
Fig. 3. Here the probability density functions are shown, one each
for the signal and noise before and after 10 lower value compari-
sons. The two noise probability densities demonstrate how the
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standard deviation of the noise decreases approximately 6.5-fold
after 10 lower value comparisons. The signal intensity is also af-
fected by the lower value comparison. Each of the angle spectra
are collected independently and therefore will have uncorrelated
noise causing the maximum intensity to be distributed as defined
by the single angle peak intensity curve. After 10 lower value com-
parisons the distribution of intensities is shown. This curve has a
mean intensity decrease of 1.5 times the standard deviation of
the single angle noise.

The distributions defined in Fig. 3 also allow us to determine an
expected signal-to-value for a set of radial sampling conditions and
estimate the expected signal-to-noise change when converting
from Cartesian to radial sampling. With the ability to determine
how the noise and signal distributions change it is possible to de-
fine an expected signal-to-noise value. For example, if 10 radial
sampling angles are collected we know the standard deviation of
the noise will decrease by 6.5-fold and the maximum signal de-
crease is 6. Therefore, if a target signal-to-noise of 10 is desired
the minimum signal needs to be at least 1.5 times the standard
deviation of the noise and the test angle for a given set of acquisi-
tion parameters needs to have a signal-to-noise of at least 7.5.
Using the same rationale it is possible to determine the change
in signal-to-noise when converting from Cartesian to radial sam-
pling. For a fixed experiment time and a required set of angles
we are able to predict the change in the standard deviation of
the noise using Eqs. (9), (10) and (19). Accordingly, we can also
determine the change in the mean and standard deviation of the
signal distribution using Eqs. (22), (27) and (28). The theoretical
maximum gain is then estimated from Fig. 3. Note that this is
the maximum gain because we are not accounting for the ridge
values in the noise as discussed above.

The distributions and maximum signal reduction also allow for
one to evaluate the feasibility of employing radial sampling in
place of Cartesian sampling. We have recently presented an anal-
ysis on the number of sampling angles necessary to resolve a set
of peaks. If the number of angles have been defined, the desired
acquired digital resolution of each angle is determined and the
total experiment acquisition time is fixed then it is possible to
determine the maximum number of transients used in each
experiment. If the number of transients is sufficient to meet the
signal-to-noise criteria then radial sampling is feasible. If the re-
quired number of angles to resolve all peaks in a spectrum is
not known this methodology also allows one to define the maxi-
mum number of angles that could be collected in a given exper-
iment time in order to estimate the feasibility of application of
radial sampling. Note that in the case where it is possible to col-
lect a large number of angles that one should maintain some de-
gree of spacing between angles to assure unique data from each
angle. In this case it would be advisable to collect additional
increments or transients.

Optimizing acquisition parameters to obtain a target single an-
gle signal-to-noise while substantially reducing the noise with the
lower value comparison is the essence of Sensitivity Enhanced n-
Dimensional NMR (SEnD).
3. Results

The SEnD NMR strategy was tested with the HNCO experiment
using a 20 lM 13C,15N-ubiquitin sample [15]. Three HxCO projec-
tions or faces of the HNCO, corresponding to a radial sampling an-
gle of zero, were collected with 4, 8 or 16 transients (Fig. 4a–c).
The corresponding full radial sampled three-dimensional experi-
ments with ten angles equally distributed between 0 and 90 were
collected to demonstrate the effects of varying S/N on the final
lower magnitude spectrum. Representative two-dimensional
slices of these spectra are shown in Fig. 4d–f. For this particular
sample, use of four transients per free induction decay (FID) re-
sulted in an average cross peak S/N of 3. This is well below the
necessary S/N of 6 required by the SEnD approach and authentic
peaks were indeed removed during lower value comparison
(Fig. 4d). In the case of the spectrum obtained with eight tran-
sients the average S/N of peaks was 5.5. Since this is slightly be-
low the SEnD criterion of 6 particular attention would need to be
paid to the weakest peak(s). This is demonstrated in the Fig. 4e
where the lower magnitude processed spectrum contains all of
the peaks but the intensities and lineshapes are not uniformly
accurate. When 16 transients are used all of the peaks have a sig-
nal-to-noise greater than the SEnD minimum of 6 and all are
accurately represented in the lower value processed three-dimen-
sional spectrum (Fig. 4f).

Statistical theory predicts that a significant sensitivity advan-
tage over Cartesian sampling can be achieved for a fixed unit of
acquisition time by applying the SEnD criteria to radial data acqui-
sition providing that the minimum S/N criterion is met. This was
tested by varying the number of transients while concomitantly
changing the number of angles and keeping the total experiment
time constant. The results are shown in Fig. 5. Here four radial
angle experiments were collected on a 1 mM 13C,15N-ubiquitin
sample, each requiring 7 h of data collection. A corresponding tra-
ditional Cartesian sampling spectrum was also obtained. The radial
sampled experiments were collected with equivalent resolution to
the Cartesian experiment but varied the number of transients and
radial angles as follows: 32 transients with 5 angles, 16 transients
with 9 angles, 8 transients with 18 angles, and 4 transients with 36
angles. Each radial sampled data set equally distributed the angles
used between 0 and 90. A substantial S/N advantage is achieved
over Cartesian sampling when a large number of angles are used.
This advantage is achieved because of the reduction in noise from
the lower value comparison. When a smaller number of angles are
used the S/N is comparable to Cartesian sampling. This indicates
that when only a small number of angles are available Cartesian
sampling might be desirable.

To further illustrate the advantage of SEnD optimization,
equivalent resolution HNCO spectra were collected on a 20 lM
ubiquitin sample. When Cartesian sampling was used the total
measurement time was 7 h and employed 4 transients and 36
complex increments in each of the indirect dimensions. For the
SEnD optimization experiment, 5 angles, 32 transients and 36
quaternion data points were used for each angle. The requisite
sensitivity of each angle spectrum was determined by collecting
the HxCO face as a function of transients. The minimum number
of transients required to satisfy the SEnD S/N criterion of 6 was
determined to be 16, as demonstrated by Fig. 4c. Thirty-two
transients were used to ensure that the SEnD criteria were met
for all peaks in order to account for any variation in peak inten-
sity as a function of sampling angle. This defines the total num-
ber of angles for the fixed total acquisition time to be 6,
including 0 and 90 which require half of the quadrature compo-
nents and therefore require half of the measurement time as
compared to all other angles. The 6 angles were equally distrib-
uted between 0 and 90. Subsequent to generation of the final
spectrum the spectrum was analyzed using the algorithms we
have previously presented [11] and all peaks were determined
to be resolved. Comparison of the conventional Cartesian spec-
trum and the SEnD optimized spectrum clearly indicates the dis-
tinct advantage that SEnD optimization offers (Fig. 6). Analysis of
the SEnD optimized spectrum allowed all expected peaks to be
identified and had S/N distributed between 13 and 25. The
equivalent peaks in the Cartesian spectrum have a S/N distribu-
tion between 4 and 10, further demonstrating the advantage of
SEnD optimization.



Fig. 4. The influence of signal-to-noise on peak retention during lower value comparison is demonstrated here using 20 lM ubiquitin. HxCO faces of the HNCO are used to
assess the signal-to-noise of the radial sampled angle planes. The S/N was varied by changing the number of transients. 4, 8 and 16 transient spectra are shown in spectra a, b
and c, respectively. One-dimensional slices are overlaid to illustrate the quality of the data. The average S/N of the three planes was 3 for 4 transients, 5.5 for 8 transients and
8.2 for 16 transients. Stacked plots of representative indirect planes of the lower magnitude spectra when 10 angles were compared are shown for each of the three settings of
transients employed. The n = 4 transient/FID spectrum is shown in (d), 8 transient spectrum in (e) and 16 transient spectrum in (f).
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4. Discussion

Previously, radial sampling has been utilized to optimize acqui-
sition time and resolution, both without regard to sensitivity. Here
we have defined the relevant criteria to determine the feasibility of
utilizing radial sampling to boost both acquisition speed and reso-
lution. Additionally, the defined criteria allow for simultaneous
optimization of signal-to-noise. Various parameters are associated
with the final sensitivity of a multidimensional NMR spectrum.
Here we have demonstrated a method, employing radial sampling,
to optimize the sensitivity of a multidimensional NMR experiment.
This method exploits the redundancy of the data collection, provid-
ing that a minimum S/N is achieved in each component radial spec-
trum. This gives assurance that authentic peaks will survive
application of the lower value algorithm. Generally, a minimum
signal-to-noise of 6, for each angle spectrum as defined by the
maximum signal reduction during lower value comparison, is suf-
ficient. Effectively time allocated to increasing S/N in conventional
experiments is redistributed to the collection of additional angle
spectra that can be used to exponentially decrease the noise of
the spectrum. Clearly the availability of cryogenically cooled
probes and preamplifiers allows for the minimum S/N of individual
angle spectra to more easily reached and emphasizes the synergy
between high sensitivity probes and the SEnD methodology devel-
oped here. From a practical point of view, it is important to empha-
size that it is possible to test for the satisfaction of the SEnD S/N
criterion prior to acquisition of an entire data set. This is most eas-
ily accomplished by collecting a two-dimensional face of a three-
dimensional experiment or the three-dimensional equivalent of a
four-dimensional experiment. The projections allow one to con-
clude at the outset whether SEnD radial sampling is preferable to
conventional Cartesian sampling with respect to final signal-to-
noise.

The SEnD approach is generally applicable to all NH-based
backbone resonance assignment experiments that are amenable
to radial sampling. We have used a radial sampled (3,2)HNCO spec-
trum here to demonstrate the concepts, but the generality of the
statistics allows for the extension of the methodology to four



Fig. 5. The advantage of optimizing data collection parameters is shown here. Five
experiments were collected on 1 mM ubiquitin, each requiring 7 h of measurement
time. One experiment employed Cartesian sampling while the other four utilized
radial sampling. The resolution was held constant by collecting 32 complex in both
of the indirect dimensions of the Cartesian experiment, and 32 quaternion points
for each angle in the radial sampled experiments. The four radial sampled
experiments concomitantly varied the number of transients and angles to keep a
constant experiment time. The four combinations used were 32 transients and 5
angles; 16 transients and 9 angles; 8 transients and 18 angles and 4 transients and
32 angles. The average S/N of all the peaks in the resulting lower magnitude spectra
are plotted with the average S/N of the Cartesian experiment shown for reference.
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dimensions, if not higher, as long as the SEnD criteria are satisfied.
Such is the case for a (4,3) sampled experiment, where the criteria
would be the same as the (3,2) sampled experiment presented
here. Additionally, as we will report elsewhere, the sensitivity gain
offered by the SEnD approach provides the opportunity for higher
sensitivity and better digital resolution four-dimensional NOESY
spectra to be obtained. The application of the SEnD approach in
the context of quantitative or even semi-quantitative analysis of
NOE peak intensities will require special consideration. This is be-
cause the largest negative deviation from a peaks mean is selected
for during the lower magnitude comparison of all angle spectra.
However, after application of the SEnD method to identify peaks,
analyzing the individual angle spectra and treating them with
the usual statistics for redundant measurement can potentially re-
cover accurate intensities. Also, particular attention should be paid
to the dynamic range of the peaks in this spectrum. Only peaks
meeting the SEnD criteria will be enhanced in the final spectrum.
Therefore careful attention is needed for the weakest peaks. This
will be described in more detail elsewhere.

Finally, our objective here has not been to carry out a compar-
ison of all of the sparse sampling and processing methods avail-
Fig. 6. Comparison of SEnD optimized radial sampling (a) and Cartesian sampling (b) o
acquisition time and were collected with equivalent resolution parameters. In the exampl
the Cartesian spectrum are obscured by noise.
able. Rather we have focused on exploiting the redundancy of
the data, unique to radial sampling, in a manner that substantially
reduces the spectrum noise and aids in peak identification. It is
possible to envision a similar approach that combines multiple
random sampled spectra processed in combination with a lower
value noise removal step. However, as a result of the distributed
baseline artifacts associated with random sampling, the required
number of transients needed to obtain the SEnD signal-to-noise
criteria of 6 could prove to be prohibitive unless combined with
an iterative ‘‘cleaning” method. Nevertheless, the SEnD criteria
can be employed in conjunction with other methods capable of
processing radial sampled data [10,12,16–19].
5. Methods

Recombinant ubiquitin was prepared as described [15]. NMR
data was collected on either a 20 lM or 1 mM 13C, 15N uniformly
labeled sample of human ubiquitin at 25 �C on a Bruker Avance
III 500 MHz NMR spectrometer equipped with a 5 mm triple reso-
nance TCI cryogenic probe. The sample was prepared in 50 mM
potassium phosphate buffer pH 5.5 with 50 mM NaCl and 0.04% so-
dium azide in 90% H2O/10% D2O. NMR data was collected using a
standard HNCO [20] or a modified version for radial sampling, such
that t1 ¼ t1 cosðaÞ and t2 ¼ t1ðsw1=sw2Þ sinðaÞ. The Cartesian exper-
iment was collected using 36 complex points in both of the indirect
dimensions for a total of 5184 FIDs. Each FID was the average of 4
transients and contained 512 complex points requiring approxi-
mately 7 h of measurement time. The spectral width was set to
12, 30 and 12 ppm for proton, nitrogen and carbon, respectively.
The carriers for each dimension were set to 4.682, 114.93 and
174 ppm for proton, nitrogen and carbon, respectively. The maxi-
mum acquisition times for the nitrogen and carbon dimensions
were 0.0237 and 0.0239 s, respectively. In the case of radial sam-
pling all experimental parameters were set to equivalent values
as the Cartesian experiment unless otherwise noted in the main
text. All of the radial sampled experiments utilized 36 quaternion
data points, requiring 4 quadrature components per data point ex-
pect for the 0 and 90 spectra which only require 2 quadrature com-
ponents. In the case where 4 transients were used, each sampling
angle plane required 12 min of measurement time. The angle spec-
tra were processed independently using a direct 2D Fourier trans-
form. Prior to Fourier transforming, the data was apodized with
cosine-squared function to remove truncation artifacts and to
approximate the correction for unequally spaced data [3]. The data
was zero-filled to at least twice the number of incremented points.
Following processing, individual angle spectra were compared
using the lower value (magnitude) algorithm to remove the ridge
artifacts [10]. The Cartesian sampled data was processed with cor-
responding apodization and zero filling. The fast Fourier transform
was used in place of the direct 2D Fourier transform. All processing
f an HNCO spectrum obtained on a 20 lM ubiquitin. Both spectra required 7 h of
e shown, the SEnD spectrum has identifiable peaks while the corresponding peaks in
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was done using an in-house program and visualized using Sparky
[21].
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